SUPPLEMENTARY INFORMATION # Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults Tetsuro Hirono^{1*}, Satoru Asayama¹, Shunya Kaneki¹ and Akihiro Ito² ¹ Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan. ² Analytical Instrument Facility, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan. ^{*} Corresponding author. Contact: hirono@ess.sci.osaka-u.ac.jp **Supplementary Figure 1. The Taiwan Chelungpu-fault Drilling Project (TCDP).** Geological map of central Taiwan showing the drilling site, an E-W cross section through the site and the three dominant fault zones discovered at the depths of 1136 m1194 m and 1243 m at Hole B. This figure was reused from our previous published data⁵⁴. The shallowest fault zone at 1136 m in depth was most likely the one that slipped during the 1999 Chi-Chi earthquake, explained in the main text. FZ, fault zone; Fm., Formation. Supplementary Figure 2. Quantification of amorphous component. a, XRD patterns for different mixtures of quartz and amorphous silica. Q, quartz; C, corundum (α -alumina). b, Weight fraction of quartz versus integrated intensity of the broad bump. ## Supplementary Table 1. Measurements of pH in the ATTL fault gouge | Fault sample number | Ratio of sample and water | Suspension duration (hour) | рН | |---------------------|---------------------------|----------------------------|-----| | PSZ1 | 1:25 | 0.5 | 6.0 | | PSZ1 | 1:25 | 2.0 | 6.0 | | PSZ1 | 1:25 | 24.0 | 5.9 | | PSZ1 | 1:5 | 0.5 | 5.9 | | PSZ1 | 1:5 | 2.0 | 6.0 | | PSZ1 | 1:5 | 24.0 | 6.0 | | PSZ2 | 1:25 | 0.5 | 6.1 | | PSZ2 | 1:25 | 2.0 | 6.0 | | PSZ2 | 1:25 | 24.0 | 5.9 | | PSZ2 | 1:5 | 0.5 | 6.0 | | PSZ2 | 1:5 | 2.0 | 6.0 | | PSZ2 | 1:5 | 24.0 | 5.9 | | PSZ3 | 1:25 | 0.5 | 6.0 | | PSZ3 | 1:25 | 2.0 | 6.0 | | PSZ3 | 1:25 | 24.0 | 5.9 | | PSZ3 | 1:5 | 0.5 | 6.0 | | PSZ3 | 1:5 | 2.0 | 6.0 | | PSZ3 | 1:5 | 24.0 | 5.9 | | Average | _ | <u> </u> | 6.0 | ### **Supplementary Table 2. Kinetic parameters for dissolution of mineral components** | | k at 25 °C | A value | E_a value | Calculated k at 13.8 °C | Calculated k at 18.8 °C | Calculated k at 8.8 °C | Calculated k at 46.5 °C | V_m | |----------------------------|-------------------------|-----------------------------|-------------|---------------------------|---------------------------------------|---------------------------|---------------------------------------|-----------------------| | Materials | $(mol\ m^{-2}\ s^{-1})$ | $(mol \; m^{-2} \; s^{-1})$ | (kJ) | $(mol \ m^{-2} \ s^{-1})$ | $(\text{mol } m^{-2} \text{ s}^{-1})$ | $(mol \ m^{-2} \ s^{-1})$ | $(\text{mol } m^{-2} \text{ s}^{-1})$ | $(m^3 mol^{-1})$ | | Quartz | 3.98×10^{-14} | 3.3 ×10 ² | 90.9 | 9.33×10^{-15} | 1.82×10^{-14} | 4.79×10^{-15} | 4.57×10^{-13} | 2.22×10^{-5} | | Amorphous SiO ₂ | 5.89×10^{-13} | 6.7 | 74.5 | 1.82×10^{-13} | 3.09×10^{-13} | 1.05×10^{-13} | 4.47×10^{-12} | 2.73×10^{-5} | | Muscovite | 2.82×10^{-14} | 2.0×10^{-10} | 22.0 | 2.00×10^{-14} | 2.34×10^{-14} | 1.70×10^{-14} | 5.13×10^{-14} | 1.37×10^{-4} | | Muscovite (pH=3.0) | 1.41×10^{-12} | 1.0×10^{-8} | 22.0 | | | | 1.99×10^{-13} | 1.37×10^{-5} | | Kaolinite | 6.61×10^{-14} | 5.1×10^{-10} | 22.2 | 4.68×10^{-14} | 5.50×10^{-14} | 3.98×10^{-14} | 1.20×10^{-13} | 1.99×10^{-4} | | Montmorillonite | 3.89×10^{-14} | 1.0×10^{-5} | 47.0 | 1.82×10^{-14} | 2.57×10^{-14} | 1.29×10^{-14} | 1.41×10^{-13} | 9.09×10^{-4} | | Montmorillonite (pH=3.0 | 1.95×10^{-13} | 2.7×10^{-9} | 23.6 | | | | 8.09×10^{-14} | 9.09×10^{-5} | #### **Supplementary References:** 54. Maekawa, Y. *et al.* Estimation of slip parameters associated with frictional heating during the 1999 Taiwan Chi-Chi earthquake by vitrinite reflectance geothermometry. *Earth Planets Space* **66**:28 (2014).